KLASIFIKASI CEKUNGAN SEDIMEN

Pembentukan cekungan sedimen erat hubungannya dengan gerakan kerak dan proses tektonik yang dialami lempeng. Ingersol dan Busby (1995) menunjukkan bahwa cekungan sedimen dapat terbentuk dalam 4 (empat) tataan tektonik: divergen, intraplate, konvergen dan transform). Menurut Dickinson, 1974 dan Miall, 1999; klasifikasi cekungan sedimen dapat berdasarkan pada:

  1. tipe dari kerak dimana cekungan berada,

  2. posisi cekungan terhadap tepi lempeng,

  3. untuk cekungan yang berada dekat dengan tepi lempeng, tipe interaksi lempeng yang terjadi selama sedimentasi,

  4. Waktu pembentukan dan basin fill terhadap tektonik yang berlangsung,
  5. Bentuk cekungan.

Selley (1988) memberikan klasifikasi cekungan sedimen secara sederhana seperti dalam Tabel 10.2. , sedang Boggs (2001) membagi cekungan sedimen lebih rinci dan lebih komplit (Tabel 10.3).

Tabel 10.1: Mekanisme penendatan disariakan dari Dickinson (1993)

dan Ingersol dan Busby (1995)

Penipisan kerak (crustal thinning):

Perenggangan, erosi selama pengangkatan, dan penarikan akibat magmatisme

Penebalan mantel litosper(mantle-lithospheric thickening):

Pendinginan litosper yang diikuti penghentian perenggangan atau pemanasan akibat peleburan adiabatik atau naiknya lelehan astenosper

Pembebanan batuan sedimen dan gunungapi(sedimentary and volcanic loading):

Kompensasi isostatik lokal dari kerak dan perenggangan litosper regional, tergantung kegetasan litosper, selama sedimentasi dan kegiatan gunungapi

Pembenan tektonik(tectonic loading):

Kompensasi isostatik lokal dari kerak dan perenggangan litosper regional, tergantung kegetasan dibawah litosper, selama pensesaran naik (overthrusting) dan/atau tarikan (underpulling)

Pembenan subkerak(subcrustal loading):

kelenturan litosper selama underthrusting dari litosper padat

Aliran astenosper(asthenospheric flow):

pengaruh dinamik aliran astenosper, umumnya karena penunjaman litosper

Penambahan berat kerak(crustal densification):

Peningkatan berat jenis kerak akibat perubahan tekanan/ temperatur dan/atau pengalihan tempat kerak berberat-jenis tinggi ke kerak berberat-jenis rendah

Tabel 10.2: Klasifikasi cekungan sedimen (Selley, 1988)

PROSES PENYEBAB

TERBENTUKNYA

TIPE CEKUNGAN

TATAAN TEKTONIK LEMPENG

Crustal sag

Cekungan intrakraton

Intra-plate collapse

Puntir (tension)

Epicratonic downward

Rift

Tepian lempeng pasif (passive plate margin)

Sea-floor spreading

Tekanan (compression)Palung (trench)

Busur depan (fore-arc)

Busur belakang (back-arc)

Subduksi (tepian lempeng aktif)

Wrenching

Strike-slip

Gerakan mendatar lempeng

 

Table 10.3: Klasifikasi cekungan menurut Boggs (2001)

TATAAN TECTONIK

TIPE CEKUNGAN

Divergen

Rift: terrestrial rift valleys; proto-oceanic rift valleys

Antar-lempeng

Cekungan beralaskan kerak benua/peralihan: cekungan intrakraton, paparan benua, sembulan benua (continental rises) dan undak, pematang benua.

Cekungan beralaskan kerak samodra: cekungan samodra aktif, kepulauan samodra, dataran tinggi dan bukit aseismik (aseismic rigde and plateau)

Konvergen

Cekungan akibat subduksi: palung, cekungan lereng palung, cekungan busur depan, cekungan intra-busur, cekungan busur belakang.

Cekungan akibat tabrakan: cekungan retroac forelsperipheral foreland basin, cekungan punggung babi (piggyback basin), broken forland

Tranform

Cekungan akibat sesar mendatar: cekungan transextensional, transpressional, transrotaional

Hybrid

Cekungan akibat berbagai sebab: cekungan-cekungan intracontinental wrench, aulacogen, impactogen, successor

Buku ini tidak membahas secara rinci semua jenis cekungan sedimen, akan tetapi beberapa cekungan yang dianggap penting di Indonesia akan dibahas secara singkat di bawah ini (sebagian besar disarikan dari Boggs, 2001).

Cekungan Intrakraton (Intracratonic Basin)

Cekungan intrakraton (Gambar 10.1A) umumnya cukup besar terletak di tengah suatu benua yang jauh dari tepian lempeng. Subsiden pada cekungan jenis ini umumnya disebabkan oleh penebalan mantel-litosfir dan bembebanan oleh batuan sedimen atau gunungapi (Boggs, 2001). Beberapa cekungan intrakraton ini diisi oleh endapan klastika laut, karbonat, atau sedimen evaporit yang diendapkan mulai dari laut epikontinental sampai darat. Cekungan tua jenis ini di antaranya adalah Cekungan Amadeus dan Carpentaria di Australia, Cekungan Parana di Amerika Latin, dan Cekungan Paris di Perancis. Sedangkan contoh cekungan modern jenis ini adalah Cekungan Chad di Afrika.

Renggang (Rift)

Cekungan akibat perenggangan ini umumnya sempit tetapi memanjang, dibatasi oleh lembah patahan (Gambar 10.1B).. Ukuran berkisar dari beberapa km sampai sangat lebar seperti pada Sistem Renggangan Afrika Timur, dimana mempunyai lebar 30-40 km dan panjang hampir 300 km. Cekungan ini dapat terbentuk oleh berbagai tataan tektonik, namun yang paling umum oleh divergen. Perenggangan lempeng 

benua seperti antara Amerika Utara dan Eropa terjadi pada Trias menghasilkan Punggungan Tengah Atlantik (Mid-Atlantic Ridge). Sistem renggangan pada Afrika Timur merupakan contoh sistem renggangan modern.

Gambar 10.1:

Aulakogen (Aulacogen)

Aulakogen adalah jenis khusus dari renggangan yang menyudut besar terhadap tepian benua, dimana umumnya dianggap sebagai renggangan tetapi gagal dan kemudian diaktifkan kembali selama tektonik konvergen (Gambar 10.1C). Palung yang sempit tapi panjang dapat menggapai sampai kraton benua dengan sudut besar dari lajur sesar. Sedimen yang mengisi cekungan jenis ini dapat berupa sedimen darat (misalnya kipas aluvium), endapan paparan, dan endapan yang lebih dalam seperti endapan turbit. Contoh aulakogen di antaranya Renggangan Reelfoot yang berumur Paleozoik dimana Sungai Misisipi mengalir dan Palung Benue yang berumur Kapur dimana Sungai Niger membelahnya.

Cekungan tepian benua

Cekungan tepian benua dicirikan oleh kehadiran baji yang sangat besar dari sedimen yang ke arah laut dibatasi oleh lereng landai dari benua dan sembulan. Ketidakterusan struktur dijumpai di bawah sistem ini, antara kerak benua normal dan kerak peralihan (Gambar 10.1D). Sedimen terendapkan pada sistem ini: pada paparan berupa pasir neritik dangkal, lumpur, kabonat dan endapan evaporasi; pada lerengan terdiri atas lumpur hemipelagik; dan pada sembulan benua berupa endapan turbit. Cekungan renggangan (rift basin) dapat berhubungan dengan cekungan tepian benua. Contoh yang baik dari cekungan jenis ini adalah pantai Amerika dan bagian selatan-timur Kanada (Cekungan Blake Plateau, Palung Lembah Baltimor, Cekungan George Bank dan Cekungan Nova Scotian) yang terbentuk pada akhir Trias- awal Jura oleh renggangan dan terpisahnya Pangea. Beberapa cekungan itu terpisahkan dari laut membentuk lapisan tebal dari endapan klastik arkosik dan endapan lakustrin; berselingan dengan batuan gunungapi basa. Cekungan yang lain berhubungan dengan laut, membentuk sedimen yang berkisar dari endapan evaporit sampai delta, turbit, dan serpih hitam.

Cekungan berhubungan dengan subduksi

Subduksi ditunjukkan dengan aktifnya tepian benus yang mana umumnya dicirikan oleh adanya palung laut dalam, busur gunungapi aktif, rumpang parit-busur (arc-trench gap) yang memisahkan ke duanya (Gambar 10.2). Tataan subduksi terjadi lebih banyak pada tepian benua dibandingkan pada besur samodra.

Gambar 10.2: Cekungan yang berhubungan dengan subduksi pada sistem subduksi Sumatra.

Sedimen terendapkan pada sistem subduksi ini lebih dikuasai oleh endapan silisiklastik yang umumnya berupa batuan gunungapi berasal dari busur gunungapi. Endapan ini dapat berupa pasir dan lumpur yang terendapkan pada paparan, lumpur dan endapan turbit terendapkan dalam air yang lebih dapam pada lereng, cekungan, dan parit (Gambar 10.2). Sedimen pada parit dapat berupa endapan terigen yang terangkut oleh arus turbit dari daratan, bersamaan dengan sedimen dari lempeng samodra yang tersubduksikan. Ini umumnya membentuk kompleks akrasi. Batuan campuraduk (melange) dapat terbentuk pada daerah akrasi ini, yang dicirikan oleh percampuran dari batuan berbagai jenis yang tertanam pada masa dasar yang mengkilap (sheared matrix).

Contoh yang baik dari sistem subduksi ini adalah subduksi Sumatra, Jepang, Peru, Chili dan Amerika Tengah. Contoh cekungan busur muka purba di antaranya adalah cekungan busur muka Great Valley, Kalifornia; Midland Valley, Inggris dan Coastal range, Taiwan. Contoh cekungan busur belakang di antaranya terjadi pada Jura Akhir – Awal Kapur terbentuk di belakang Busur Andean di Chili selatan.

Cekungan berhubungan patahan mendatar/transform

Patahan yang dapat membentuk cekungan ini adalah patahan mendatar yang menoreh dalam kerak sampai membatasai dua lempeng yang berbeda (transform fault) dan patahan yang terbatas dalam suatu lempeng dan hanya menoreh bagian atas kerak (Sylvester, 1988). Cekungan yang berhubungan dengan patahan mendatar regional terbentuk sepanjang punggung pemekaran, sepanjang batas patahan antar lempeng, pada tepian benua dan daratan dalam lempeng benua. Gerakan sepanjang patahan mendatar regional dapat membentuk berbagai cekungan nendatar (pull-apart basin). Cekungan yang dibentuk karena patahan mendatar umumnya kecil, garis tengahnya hanya beberapa puluh kilometer, walaupun ada beberapa yang sampai 50 km. Karena patahan mendatar terbentuk pada berbagai tataan geologi, cekungan ini dapat diisi sedimen laut maupun darat. Ketebalan sedimen cenderung sangat tebal, karena kecepatan sedimentasi yang tinggi yang dihasilkan oleh erosi dari daerah sekitarnya yang berelevasi tinggi, dan boleh jadi ditandai dengan banyaknya perubahan fasies secara lokal. Di Indonesia Cekungan jenis ini banyak terdapat sepanjang Patahan Sumatra (Cekungan ………………………………).

Gambar 10.3: Cekungan yang berhubungan dengan subduksi pada sistem subduksi Sumatra

10.4. TEKNIK ANALISA CEKUNGAN

Sedimen yang mengisi suatu cekungan merupakan faktor yang sangat penting untuk dipelajari dalam analisa cekungan sedimen yang bersangkutan. Sedimen tersebut dipelajari bagaimana proses terbentuknya, sifat batuan dan aspek ekonominya. Proses pembentukan sedimen meliputi pelapukan, erosi, transportasi dan pengendapan, sifat-sifat fisik, kimia dan biologi batuan; lingkungan pengendapan, dan posisi stratigrafi. Beberapa faktor yang mempengaruhi proses pengendapan dan sifat sedimen adalah:

  1. litologi batuan induk, akan sangat mempengaruhi komposisi sedimen yang berasal dari batuan tersebut;

  2. topografi dan iklim dimana batuan induk berada, mempengaruhi kecepatan denudasi yang menghasilkan sedimen yang kemudian diendapkan dalam cekungan;

  3. kecepatan penurunan cekungan bersamaan dengan kecepatan kenaikan/penurunan muka laut; dan

  4. ukuran dan bentuk dari cekungan.

Analisa cekungan merupakan hasil interpretasi yang berdasarkan pada proses sedimentasi, stratigrafi, fasies dan sistem pengendapan, peleoseanografi, paleogeografi, iklim purba, analisa muka laut, dan petrografi/mineralogi (Klein, 1995; Boggs, 2001). Penelitian sedimentologi dan analisa cekungan sekarang ini ditikberatkan pada analisa fasies sedimen, siklus subsiden, perubahan muka laut, pola sirkulasi air laut, iklim purba, dan sejarah kehidupan.

Model pengendapan semakin meningkat digunakan untuk mengetahui lebih baik tentang pengisian cekungan dan pengaruh berbagai parameter pengisian cekungan seperti pasokan sedimen, besar butir, kecepatan penurunan cekungan, dan perubahan muka laut.

Sebagai bahan untuk analisa cekungan, dibutuhkan berbagai data, mulai data dari singkapan sampai data bawah permukaan. Data tersebut termasuk data hasil pemboran dalam, studi polarisasi magnetik dan eksplorasi geofisika. Pembahasan berikut ini secara singkat akan diketengahkan teknik analisa cekungan yang umum dilakukan.

10.4.A. Penampang Stratigrafi

Data lengkap dan akurat tentang sedimen dari singkapan maupun inti bor, baik ketebalan maupun litologi setiap himpunan sedimen, merupakan hal yang sangat penting untuk interpretasi sejarah bumi. Untuk menghimpun data tersebut diperlukan pengukuran dan pemerian secara teliti dan akurat pada singkapan dan/atau inti bor. Kegiatan menghimpun data ini jamak disebut pembuatan penampang stratigrafi terukur, yang meliputi pemerian litologi, sufat-sifat perlapisan, dan kenampakan lainnya dari batuan. Pemakaian teknik tertentu dalam melakukan pengukuran penampang stratigrafi sangat tergantung pada kegunaan hasil pengukuran dan keadaan singkapan diukur di alam. Kottlowski (1965) menunjukkan beberapa cara dan peralatan untuk melakukan pembuatan penampang stratigrafi.

Sejumlah penampang stratigrafi dapat dipakai dalam pembuatan penampang melintang stratigrafi yang sangat bermanfaat dalam korelasi stratigrafi, interpretasi struktur dan perubahan fasies yang boleh jadi diikuti oleh perubahan dari lingkungan dan arti ekonomis. Penampang melintang digambarkan segai ilustrasi yang menggambarkan keadaan lokal dari suatu cekungan, sering pula disiapkan dalam rangka pembuatan peta fasies, atau bahkan menggambarkan runtunan stratigrafi seluruh cekungan. Pada umumnya penampang stratigrafi menggambarkan dua demensi dari litologi dan/atau ciri struktur dari suatu unit stratigrafi atau unit yang memotong suatu wilayah geografi.

Diagram Pagar

Informasi stratigrafi dapat pula disajikan dalam diagram pagar yang menggambarkan pandangan tiga dimensi stratigrafi dari suatu daerah atau wilayah tertentu (Gambar 10.4). Dengan cara ini hubungan antar satuan stratigrafi dapat dilihat dengan jelas. Sayangnya, bagian pagar depan akan menutup sebagian belakangnya; sehingga menyulitkan pembuat untuk menyuguhkan gambar yang baik dan jelas.

Gambar 10.4: Diagram pagar yang menggambarkan hubungan tiga dimensi dari beberapa satuan stratigrafi dari suatu wilayah

Peta Struktur

Untuk menggambarkan bentuk dan orientasi cekungan serta geometri pengisian cekungan diperlukan peta struktur. Pada dasarnya, kontur pada peta ini adalah kumpulan titik-titik yang mempunyai elevasi sama dari bagian atas atau bawah suatu datum tertentu. Struktur lokal seperti antiklin dan sinklin dapat dengan mudah dikenali pada peta jenis ini (Gambar 10.5). Peta struktur ini sangat berguna dalam eksplorasi baik hidrokarbon maupun mineral dan batubara. Dasar cekungan dapat digambarkan dengan peta ini, apabila menggunakan datum bagian bawah lapisan tertua pengisi cekungan yang bersangkutan. Dengan begitu topografi purba dapat diinterpretasi dengan mudah.

Gambar 10.5. Peta kontur struktur yang memperlihatkan struktur lokal seperti antiklin dan synklin.

Peta Isopak

Peta isopak adalah suatu peta yang konturnya menghubungkan titik-titik yang mempunyai ketebalan sama dari suatu lapisan atau satuan batuan (Gambar 10.6). Ketebalan suatu satuan batuan tergantung dari kecepatan pasokan sedimen dan ruang yang tersedia pada cekungan. Ruang pada cekungan merupakan fungsi dari geometri cekungan dan kecepatan subsiden cekungan. Bagian yang menebal secara abnormal merupakan pusat pengendapan, sebaliknya yang menipis abnormal adalah daerah yang sebelum pengendapan merupakan tinggian atau sudah lebih banyak tererosi setelah pengendapan. Dengan peta jenis ini dapat digambarkan keadaan cekungan sebelum dan selama pengendapan, sehingga apabila dilakukan analisa peta isopak untuk setiap satuan pada cekungan dimana mereka diendapkan, akan mendapatkan informasi perubahan struktur cekungan dari waktu ke waktu.

Gambar 10.6. Peta isopak yang menggambarkan daerah tinggian dan rendahan dari suatu cekungan.

Peta Paleogeologi

Peta paleogeologi adalah peta yang menggambarkan kondisi geologi tertentu di bawah atau di atas suatu unit tertentu. Sebagai contoh, kita dapat mengupas semua satuan batuan mulai dari unit stratigrafi tertentu untuk melihat satuan batuan di bawah unit stratigrafi tertentu tersebut. Kemudian kita gambarkan peta geologi di atas alas satauan batuan tersebut. Peta semacam ini disebut peta superkrop (supercrop map). Dengan yang cara sama, satuan batuan di atas suatu formasi atau tubuh batuan tertentu dapat pula digambarkan. Peta superkrop umumnya dibuat pada batas ketidakselarasan, tetapi dapat pula dibuat pada suatu satuan batuan yang mempunyai ciri tertentu. Manfaat peta jenis ini adalah untuk interpretasi pola aliran purba, pola pengisian cekungan, pergeseran garis pantai, penimbunan secara gradual dari paleotopografi.

Peta Litofasies

Peta fasies menggambarkan vareasi sifat litologi atau biolofi dari satuan stratigrafi tertentu (Boggs, 2001). Peta fasies yang umum dipakai adalah peta litofasies dimana menyajikan beberapa aspek komposisi dan tekstur batuan. Peta litofasies yang umum dipakai adalah:

a. peta perbandingan klastik (clastic-ratio map) dan

b. peta litofasies tiga komponen.

Peta perbadingan klastik menunjukkan kontur dari perbandingan klastik yang sebanding. Sedangkan perbandingan klastik adalah perbandingan dari jumlah kumulatif ketebalan endapan klastik dan jumlah kumulatif endapan non-klastik, sebagai contoh:

(konglomerat + batupasir + serpih)

——————————————

(batugamping + dolomit + evaporit + batubara)

Peta jenis ini sangat bermafaat untuk melihat hubungan litologi dengan tepi cekungan dimana sedimen tersebut diendapkan. Tentu saja bagian yang nilai perbandingan klastiknya relatif tinggi menunjukan bagian tersebut dekat dengan asal batuan atau sangat mungkin tepi cekungan. Sedangkan bagian yang nilai perbandingan klastiknya rendah menunjukkan bagian tersebut relatif jauh dari tepi cekungan. Dengan peta ini juga dapat diketahui arah tranportasi sedimen secara regional dalam cekungan itu (Gambar 10.7).

Gambar 10.7. Peta litofasies perbandingan klastik. Arah panah menunjukkan arah transportasi sedimen.

Peta litofasies tiga komponen menyajikan rata-rata atau pola kelimpahan relatif dalam suatu satuan stratigrafi dari tiga komponen litofasies (Boggs, 2001).

Analisa Arus Purba

Analisa arus purba adalah suatu teknik yang digunakan untuk mengetahui arah aliran dari arus purba pembawa sedimen ke dalam suatu cekungan pengendapan (Boggs, 2001). Tentu saja, dengan teknik ini akan diketahui juga arah kemiringan lereng purba baik lokal maupun secara regional dan sekaligus asal dari sedimen yang terendapkan.

Analisa arus purba dapat dilakukan dengan mempelajari secara mendalam dari berbagai struktur sedimen, seperti silang siur, alur sungai, dan ripple mark. Geometri dan kecenderungan dari suatu unit batuan sering dapat membantu untuk interpretasi lingkungan pengendapan dan arah arus purba. Orientasi dari kepingan batuan berbutir besar (seperti kerakal dan brangkal), ketebalan lapisan, vareasi litologi dalam suatu lapisan dapat dipakai untuk interpretasi arah arus purba dan lokasi asal atau sumber batuan.

Studi Provenan (Asalmuasal) Batuan

Komposisi dari suatu batuan sedimen klastika yang mengisi suatu cekungan sangat dipengaruhi oleh komosisi batuan sumbernya. Komposisi itu tentu saja juga dipengaruhi oleh pelapukan dan iklim daerah yang bersangkutan. Studi provenan meliputi: (a) Komposisi litologi dari asal batuan, (b) tataan tektonik dari daerah asal batuan, dan (c) iklim, topografi, dan kemiringan daerah asal batuan (Boggs, 2001).

Vareasi litologi dari batuan asal dipelajari dari berbagai jenis mineral dan kepingan batuan yang dijumpai pada suatu batuan sedimen klastika.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s